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Abstract

In many empirical applications, a combined density forecast is constructed using
the linear pool which aggregates several individual density forecasts. We analyze the
linear pool’s implications concerning forecast uncertainty in a mean-variance predic-
tion space framework. Our theoretical results show that, if the variance predictions
of the individual density forecasts are unbiased, the well-known ‘disagreement’ com-
ponent of the linear pool exacerbates the upward bias of the linear pool’s variance
prediction. Moreover, we find that disagreement has no predictive content for the
true forecast uncertainty under conditions which can be empirically relevant. These
findings suggest to remove the disagreement component from the linear pool. The
resulting centered linear pool tends to outperform the linear pool in empirical ap-
plications based on stochastic volatility models for macroeconomic time series and
stock returns.

1 Introduction

There is a growing recognition that measuring forecast uncertainty is of first-order im-
portance to economic policy making. For example, many central banks have followed

∗This paper reflects the authors’ personal opinions, but not necessarily the views of the
Deutsche Bundesbank or its staff. Authors’ email addresses: malte.knueppel@bundesbank.de and
fabian.krueger@awi.uni-heidelberg.de. We thank seminar and workshop participants at HITS, Heidel-
berg University and the National Bank of Poland for helpful comments. Of course, any errors are our
own responsibility. The work of Fabian Krüger (FK) has been funded by the European Union Seventh
Framework Programme under grant agreement 290976. FK also thanks thank the Klaus Tschira Foun-
dation for infrastructural support at the Heidelberg Institute for Theoretical Studies (HITS), where he
was employed during the initial stage of this project.
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the Bank of England’s lead in publishing probabilistic forecasts of inflation and related
variables.1 Similarly, Manski (2015) calls for systematic measurement and communi-
cation of uncertainty in official statistics. In statistical terms, confronting uncertainty
about future developments means to issue density forecasts, rather than traditional point
forecasts. An immediate question is how to make ‘good’ density forecasts. In light of
a large number of available forecasting methods and data sources, it is now common to
consider a combination of many methods, rather than a single method, for that purpose.

There are many possible ways to pool the individual densities f1, . . . , fn in order to
construct a combined density fc. In practice, though, much of the literature focuses on
the linear pool (LP) given by fc =

∑n
i=1 ωifi, where {ωi}ni=1 is a set of combination

weights. See, for instance, Hall and Mitchell (2007), Geweke and Amisano (2011), Wag-
goner and Zha (2012), or Del Negro, Hasegawa, and Schorfheide (2016). In this work, we
analyze the linear pool’s implications concerning forecast uncertainty in a mean-variance
prediction space framework, i.e. in a framework where we consider the joint distribution
of mean forecasts, variance forecasts, and the target variable in terms of their first two
moments. This general setup allows us to derive several new results.

If the individual density forecasts are dispersed correctly. i.e. if their variance fore-
casts are unbiased, the dispersion of the linear pool is too large with respect to the
mean-squared error (MSE) of its mean forecast, as shown by Gneiting and Ranjan
(2013). Using the fact that the variance of the linear pool can be decomposed into
a weighted-individual-variance component and a disagreement component, as stated,
inter alia, in Wallis (2005), we show that eliminating the disagreement component un-
ambiguously reduces the variance bias of the linear pool, if the individual forecasts are
correctly dispersed and the weights are positive. The disagreement component measures
the average squared distance of the individual mean forecasts from the combined mean
forecast. Its elimination is achieved simply by recentering all individual forecasts at the
combined mean forecast, resulting in a centered linear pool of density forecasts. Un-
der the conditions mentioned, the dispersion of the centered linear pool is smaller than
the dispersion of the linear pool, but still larger than the MSE of the combined mean
forecast.

In addition, we show that the weighted-individual-variance component encompasses
the disagreement component concerning the prediction of the MSE of the combined
mean forecast, if the combination weights are chosen optimally according to the MSE
criterion formulated in Bates and Granger (1969), if the forecasts and the target variable
are normally distributed, and if the individual variance forecasts are perfectly correlated
with the MSE of the combined mean forecast. Put differently, under these conditions,
the disagreement component is a noise term in the variance forecast of the linear pool.

These two results suggest that the disagreement component can be detrimental to

1A list of these central banks can be found in Table 1 of Franta, Baruńık, Horváth, and Šmı́dková
(2014).
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the performance of the linear pool. Indeed, using the scoring rule proposed by Dawid
and Sebastiani (1999), which is designed for the joint evaluation of mean and variance
forecasts and which is equal to the logarithmic score if the forecast density is normal, we
find that the centered linear pool outperforms the linear pool if all conditions mentioned
above hold, i.e. if the individual density forecasts are dispersed correctly, the Bates-
Granger-weights are used, normality is given, and the individual variance forecasts are
perfectly correlated with the MSE of the combined mean forecast. Moreover, it turns
out that the optimum of the Dawid-Sebastiani score can be obtained employing the
Bates-Granger-weights and reducing the variance forecast of the centered linear pool by
subtracting the expected disagreement.

In applications of the centered linear pool to density forecasts of macroeconomic
variables and stock returns, we find that it often outperforms the linear pool, and that, in
several cases, the weighted-individual-variance component encompasses the disagreement
component concerning the prediction of the MSE of the combined mean forecast.

The remainder of this paper is structured as follows: Section 2 presents a baseline
example which motivates our analysis. Section 3 introduces the formal setup, and Section
4 presents our main theoretical results on the linear pool. Sections 5 and 6 contains
simulation and data examples, and Section 7 concludes.

2 Baseline example

Consider the target variable Y determined as

Y = X1 +X2 + U,

where X1, X2 and U are distributed asX1

X2

U

 ∼
N

0
0
0

 ,
 σ2X ρσ2X 0
ρσ2X σ2X 0

0 0 σ2U

 .

Forecaster 1 only observes X1, forecaster 2 only observes X2; Each forecaster aims
at predicting the distribution of Y , and each forecaster i has an infinite number of
paired observations of (Y,Xi) . Accordingly, both forecasters state the correct forecast
distribution given their information sets.

Both forecasters thus issue a Gaussian distribution, with mean Mi and variance Vi
shown in Table 1. A linear pool of the two forecasts is given by fc = ωf1 + (1 − ω)f2,
where fc is the density of the combined forecast, f1 and f2 are the individual densities,
and 0 < ω < 1. Table 1 lists the formulas for the linear pool’s mean Mc and variance Vc
in the present example. As we argue below, the combined variance forecast Vc should
have two properties:
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Object Formula

Mean of forecaster i Mi = (1 + ρ)Xi

Variance of forecaster i Vi = V = (1− ρ2)σ2X + σ2U
Combined mean Mc = ωM1 + (1− ω)M2

Disagreement D = ω (Mc −M1)
2 + (1− ω) (Mc −M2)

2

Combined variance Vc = ωV1 + (1− ω)V2 +D

Squared error (SE) of Mc Sc =
(
(1− ω) M1 + ω M2 + U

)2
Expected combined variance E(Vc) = (1− ρ2)σ2X + σ2U + 2 ω (1− ω) (1− ρ2) (1 + ρ) σ2X
Expected disagreement E(D) = 2 ω (1− ω) (1− ρ2) (1 + ρ) σ2X
Expected SE of Mc E(Sc) = (1− ρ2)σ2X + σ2U − 2 ω (1− ω) (1− ρ2) (1 + ρ) σ2X

Table 1: Formulas for the mean, variance, and squared forecast error of the linear pool
in the motivating example.

• It should have predictive power for Sc, the squared forecast error associated with
Mc. In practice, Vc should thus be correlated with Sc.

• It should have the same unconditional mean as Sc. Intuitively, the variance forecast
should correctly assess the magnitude of forecast errors.

As shown in Table 1, the linear pool’s variance is of the form Vc = a + D, where
D = ω (M1 −Mc)

2 + (1− ω) (M2 −Mc)
2 reflects disagreement between the two point

forecasts, and a is a constant. Strikingly, the linear pool’s variance Vc fails both of the
requirements mentioned above:

• For the leading case ω = 0.5, it can be shown that D is independent of Sc.
2 For

other choices of ω, the relation between D and Sc depends on ρ, σ2x and σ2U , but
often implies weak correlation between D and Sc.

• The linear pool’s expected variance, E(Vc) exceeds the expected squared error
E(Sc) for all admissible values of ω. The linear pool can therefore be labeled un-
derconfident or overdispersed. Further inspection shows that the upward bias of
E(Vc) is equal to 2 × E(D). Hence, the linear pool would overpredict the true
forecast uncertainty even if the disagreement component was eliminated from the
pool’s variance forecast.

In the above example, disagreement can thus be viewed as a positive-valued noise
term which harms the linear pool’s forecast variance.

2ω = 0.5 is a popular default choice in practice, and is the MSE-optimal choice in the present example.
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3 Formal setup

Here we describe methods for evaluating and constructing forecasts, as well as a proba-
bility model for the joint distribution of forecasts and realizations.

3.1 Dawid-Sebastiani score for forecast evaluation

We consider combining n alternative mean and variance forecasts that could stem from
different data sources, different statistical methods, or could represent the judgement of
different forecasters. We view the forecasts as random variables, collected in the random
vector Z ≡ (M1, . . . ,M2, V1, . . . , Vn)′ with support Z. After observing Z = z, a forecast
combination method returns a combined mean forecast m = fm(z) and a combined
variance forecast v = fv(z). The combination method is characterized by the functions
fm and fv. While we will study specific combination methods below, fm and fv can
initially be thought of as general functions. We evaluate the combined forecast with the
Dawid and Sebastiani (1999) score (DSS):

DSS(m, v, y) = log v +
(y −m)2

v
; (1)

here y denotes a realization of the target variable Y , and a smaller score corresponds
to a better forecast.3 Our goal is to choose functions fm and fv which minimize the
expected DSS:

min
fm,fv

E [DSS (fm(Z), fv(Z), Y )] ,

where the expectation E is over both Z and Y . Using the law of iterated expectations,
the above problem is solved by setting

m = fm(z) = Ez [Y ] ,

v = fv(z) = Ez [S] , (2)

where Ez denotes expectation conditional on Z = z and S is defined as

S = (Y − fm(z))2.

In words, optimality requires to set m equal to the conditional expectation of Y , and
v equal to the conditional expectation of (Y − fm(z))2, the squared forecast error (S).

Equation (2) yields another implication of forecast optimality:

E[(Y − fm(Z))2] = E[fv(Z)], (3)

i.e., the expected squared error of the mean forecast should be equal to the expected
forecast variance.

3The DSS is a legitimate loss function for density forecasts, in that it is a proper scoring rule as studied
by Gneiting and Raftery (2007). It is equivalent to the logarithmic score of a Gaussian distribution.
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3.2 Linear pools

The linear prediction pool, which is typically attributed to Stone (1961), is a specific,
very popular combination method which sets

fm(z) = m̄ =
n∑
i=1

ωimi (4)

fLPv (z) =
n∑
i=1

ωivi +
n∑
i=1

ωi(mi − m̄)2 (5)

where
∑n

i=1 ωivi is the weighted-individual-variance component and
∑n

i=1 ωi(mi − m̄)2

is the disagreement component of the linear pool’s variance forecast. In what follows,
we will take the mean specification in (4) as given, and investigate the properties of
the variance specification in (5) conditional on (4). Moreover, we will consider the
combination

fCLPv (z) =

n∑
i=1

ωivi (6)

for the variance forecast, which we refer to as the centered linear pool (CLP). In terms of
density forecasts, this combination method relocates each individual density such that
its resulting mean mCLP

i is equal to m̄.

The performance of the linear pools depends on the joint properties of the forecasts
(i.e., the individual forecast means and variances) and the predictand. As a next step,
we therefore propose a model for this object.

3.3 Model for forecasts and realizations

We assume that the joint distribution of mean and variance forecasts is given byMV
U

 ∣∣∣∣η ∼
µMηµV

0

 ,
ηΣM 0 0

0 η2 ΣV 0
0 0 ηΣU

 .

where the column on the right-hand side denotes the expectations, the matrix is the
variance-covariance matrix, and U denotes the residuals of the projection

Y = (M − µM )′ γ + U

where Y is the demeaned predictand. The mean forecasts are collected in M ∈ Rn, which
is an n−variate continuous random vector. Since E [Y ] = 0, µM denotes the biases of the
mean forecasts. V ∈ Rn+ is an n-variate random vector with positive continuous entries
denoting the variance forecasts.
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The independent scalar random variable η ∈ R+ has E [η] = 1 and scales the vari-
ances of M , U, and Y, implying that these variances are perfectly correlated. If we
consider the case where the mean forecasts are based on different information sets, this
assumption implies that the variances of the variables in these information sets are per-
fectly correlated with the variance of the predictand Y . While this assumption might
appear restrictive, the following results hold conditional on a specific value of η. This
means that, for example, in a time series context where η varies over time, these results
actually hold within each period. Moreover, in macroeconomics, the variances of many
variables actually appear to be strongly correlated, as documented in Carriero, Clark,
and Marcellino (2016).

Note that the example described in 2 is a special case of the general setup presented
here with η being constant and, hence, equal to 1, with

M1

M2

V1
V2
U

 ∼



0
0(

1− ρ2
)
σ2X + σ2U(

1− ρ2
)
σ2X + σ2U
0

 ,


(1 + ρ)2 σ2X ρ (1 + ρ)2 σ2X 0 0 0

ρ (1 + ρ)2 σ2X (1 + ρ)2 σ2X 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 σ2U




and with

Y =
[
M1 M2

] [(1 + ρ)−1

(1 + ρ)−1

]
+ U.

4 Theoretical results

In this section, we derive our main theoretical results.

4.1 List of assumptions considered

Unless explicitly noted otherwise, we assume that the prediction space framework of
Section 3.3 applies. We also consider the following restrictions on the latter:

A1 The individual variance forecasts V are unconditionally unbiased, i.e.
E[Vi] = E[Y −Mi]

2, i = 1, . . . , n.

A2 The forecast means are all identical, i.e. µM =
[
κ, . . . , κ

]′
for some κ ∈ R.

A2+ The forecast means are all equal to zero, i.e. µM =
[
0, . . . , 0

]′
.

A3 The combination weights ω are deterministic and sum to one.
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A3+ The combination weights ω are deterministic, positive and sum to one.

A4 The combination weights have been chosen such that E[S] is minimized, subject
to the constraint of adding to one (Bates and Granger (1969)).

A5 The joint distribution of M and U conditional on η is normal.

A6 It holds that ΣV = 0.

Remark 4.1. The optimal weights ω∗ fulfilling A4 do not depend on η, and, thus, they
also minimize E[S| η].

4.2 Biases in the variance forecasts of linear pools

The following result uses the prediction space framework of Section 3.3 to derive a specific
formula for E[Vlp], the variance of the LP.

Theorem 4.1. Under A1 and A3, it holds that E[S] = E[ω′V ] − E[D]. Hence the LP
and CLP systematically deviate from S according to

E[S] = E[ω′V ] + E[D]︸ ︷︷ ︸
E[Vlp]

−2 E[D],

= E[ω′V ]︸ ︷︷ ︸
E[Vclp]

− E[D].

Proof. See Appendix.

Corollary 4.1. The DSS is minimized by using the weights from A4 for the mean
forecast and setting v = E[ω′V | η]− E[D| η]. This follows from the facts that, given any
variance forecast v ∈ R+, the DSS-optimal mean forecast minimizes E[S| η], and that
the optimal variance forecast v equals E[S| η].

Interestingly, a qualitative statement similar to that of Theorem 4.1 can be derived
without the prediction space framework of Section 3.3.

Theorem 4.2. Consider an arbitrary joint distribution of M , V and Y . Under A1 and
A3+, both the linear pool and the centered linear pool are overdispersed, and the centered
linear pool is less overdispersed than the linear pool.

Proof. See Appendix.
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Note that Theorems 4.1 and 4.2 have the same qualitative interpretation: If the in-
dividual variances are unbiased, then both the LP and the CLP are underconfident.
However, Theorem 4.1 exploits the prediction space framework to make a precise quan-
titative statement on the pools’ underconfidence.

4.3 Disagreement encompassed by weighted individual variance fore-
casts

Consider the following linear regressions:

S = a0 + a1D + a2 ω
′V + error;

S = b1D + b2 ω
′V + error; (7)

We have that

a1 =
Cov[S,D − α̃− β̃ ω′V ]

V[D − α̃− β̃ ω′V ]

=
Cov[S,D]− β̃ Cov[S, ω′V ]

V[D] + β̃2ω′V[V ]ω − 2β̃ Cov[D,ω′V ]
,

where α̃ and β̃ are the coefficients from a linear regression of D on a constant and ω′V .
A very similar expression holds for b1 (same formula, except that Cov[A,B] is replaced
by E[AB] and V[A] is replaced by E[A2]).

Theorem 4.3. Assume that A2, A4, A5 and A6 hold. Then, a1 = b1 = 0, i.e. ω′V
encompasses disagreement in the prediction of S.

Proof. A5 allows to derive expressions for the relevant variance and covariance terms (see
Appendix B). Under A2 and A4, some of the terms simplify considerably (see Lemma
B.1 in the appendix). The result then follows from using A6.

Remark 4.2. Assumption 4 can imply negative weights.

4.4 Relative precision of ω′V and D in the prediction of S

Theorem 4.3 relies on the assumption ΣV = 0. If this assumption does not hold, the
relative importance of D and ω′V for the prediction of S turns out to depend on their
coefficients of variation.
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Theorem 4.4. Under assumptions A2+, A4, and A5, predictions for S based on ω′V
do not produce a higher mean-squared error than predictions based on D if the condition√

V [ω′V ]

E [ω′V ]
≤
√
V [D]

E [D]
. (8)

holds. If the inequality is strict, using ω′V yields more precise predictions than using D.

Proof. See Appendix.

It might be interesting to assess the probability that (8) holds in practice. Since
V [ω′V ] = 0 if ΣV = 0, the question is whether ΣV could easily become large enough for
the condition (8) to be violated. While it is difficult to investigate this issue in a general
manner, the case with n = 2 forecasts and η being constant yields valuable insights.

Theorem 4.5. Assume that each variance forecast Vi equals Vi = (y −mi)
2 , where mi

is a single mean forecast and y is the corresponding realization of Y . Under assumptions
A2+ and A5, and with n = 2 and η = 1, the coefficients of variation of ω′V and D are
related by √

V [ω′V ]

E [ω′V ]
≤
√
V [D]

E [D]
=
√

2.

If the forecasts are not perfectly correlated, and if no forecast receives a weight of one,
the inequality is strict.

Proof. See Appendix.

If the assumptions of Theorem 4.5 hold, but Vi is determined using R forecast er-

rors, i.e. by Vi = V
(R)
i = 1

R

∑R
r=1 (yr −mi,r)

2 , and if the forecast errors yr1 − mi,r1

and yr2 −mi,r2 are uncorrelated for r1 6= r2, we have that
√
V
[
ω′V (R)

]
/ E

[
ω′V (R)

]
=

R−1/2
√
V
[
ω′V (1)

]
/ E

[
ω′V (1)

]
, where V (1) corresponds to the variance forecasts de-

scribed in Theorem 4.5. The fact that the coefficient of variation of ω′V will be consid-
erably smaller than its counterpart for D, even if the former is estimated from a very
small number of previous forecast errors only, makes it seem unlikely that in empirical
applications, ΣV will be large enough for the condition (8) to be false.

For the baseline example in Section 2 with w = 1/2, under the assumption of Theorem
4.5 one obtains √

V [ω′V ]

E [ω′V ]
=

√
2σ4U + cUX 2σ2Uσ

2
X + cX σ4X

σ4U + c′UX 2σ2Uσ
2
X + c′X σ4X

with cUX = (1 + ρ) (1− ρ)2, cX =
(
1 + ρ2

)
(1− ρ)2 (1 + ρ)2, c′UX =

(
1− ρ2

)
, and c′X =(

1− ρ2
)2

. Since cUX / c′UX = 1 − ρ and cX / c′X = ρ2 + 1, the inequalities 0 ≤
cUX / c′UX ≤ 2 and 0 ≤ cX / c′X ≤ 2 hold, implying that

√
V [ω′V ] / E [ω′V ] ≤ 2.
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5 Monte Carlo results

[TO BE COMPLETED]

6 Empirical case studies

We next investigate the properties of the LP and CLP in two case studies from macroe-
conomics and finance.

6.1 Nowcasting quarterly macro data

• Forecast 1: Model based nowcasts, obtained as in Krüger, Clark, and Ravazzolo
(forthcoming) Forecast 2: SPF nowcast, plus variance from stochastic volatility
specification. The latter is obtained by fitting a Bayesian linear model with SV on
the SPF nowcast, and shrinking the coefficient on the SPF to be essentially equal
to one. Appendix D provides a formal description of the estimation methodology
and prior choices.

• Data and variable definitions closely follow Krüger, Clark, and Ravazzolo (forth-
coming)

• Results:

– Disagreement is quite large (accounting for 19% of LP’s variance for GDP,
25% for INF, 38% for TBI, and 64% for UNE), see Table 2.

– Nowcast models are underconfident, in the sense that average variance exceeds
SE. Disagreement leads to even more underconfidence.

– Regressions of SE on D and V (Table 3): D is significant in case of GDP and
TBI. V is significant in case of INF and TBI.

– CLP has lower (i.e., better) scores than LP for all variables. DM tests are
significant for TBI and UNE.

– Results suggest that, on the whole, D harms LP. Hence underconfidence effect
(Table 2) seems more important than correlation with SE (Table 3).
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Figure 1: Mean and variance predictions of the two nowcasting methods, plotted over
time.
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Figure 1: Mean and variance predictions of the two nowcasting methods, plotted over
time.
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VLP ω′V D SE DSSLP DSSCLP

GDP 5.431 4.441 0.990 2.745 2.129 2.098
INF 1.461 1.095 0.366 0.857 0.863 0.825
TBI 0.027 0.017 0.010 0.009 -3.878 -4.017
UNE 0.056 0.020 0.035 0.005 -3.147 -3.691

Table 2: Nowcast case study. Sample averages for several variables. The sample period
is 1985:Q1 to 2013:Q4, except for TBI (1991:Q3 to 2013:Q4).

(Intercept) D ω′V

GDP 1.211 0.827 0.161
(0.655) (0.234) (0.111)

INF 0.298 0.522 0.336
(0.146) (0.374) (0.148)

TBI -0.001 0.378 0.399
(0.001) (0.025) (0.095)

UNE 0.004 0.013 0.042
(0.001) (0.013) (0.071)

Table 3: Nowcast case study. Regression of squared errors on disagreement and average
variance. Heteroscedasticity robust standard errors in parentheses (Newey-West with
truncation at lag zero). The sample period is as defined below Table 2.
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6.2 Forecasting monthly excess returns

• Models of the form
Rt = α+ βXt−1 + εt,

where Rt is the monthly excess return, Xt is one out of 15 predictors considered by
Welch and Goyal (2008), and εt is an error term with stochastic volatility. Note:
Forecast combination for excess returns has been considered by Rapach, Strauss,
and Zhou (2010) and others.

• The model is estimated via Bayesian methods, see Appendix D. Based on expand-
ing window, with observations ranging back until January 1970. Evaluation period
is from January 1990 to December 2015.

• Results:

– The individual models are underconfident, with average variance clearly ex-
ceeding the LP’s squared error (Table 4).

– On average, disagreement is much smaller than variance. Accordingly, the
LP and the CLP perform very similarly (Table 4).

– Disagreement does not predict squared forecast errors, but average variance
does (Table 5)

VLP ω′V D SE DSSLP DSSCLP

23.255 23.192 0.063 18.101 3.776 3.776

Table 4: Excess return case study: Sample averages for several variables. The sample
period is Januar 1990 to December 2015.

(Intercept) D ω′V

6.478 14.364 0.462
(3.308) (39.067) (0.106)

Table 5: Excess return case study: Regression of squared errors on disagreement and
average variance. Heteroscedasticity robust standard errors in parentheses (Newey-West
with truncation at lag zero). The sample period is as defined below Table 4.
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Figure 2: Mean and variance predictions of models for excess returns, plotted over time.
Each of the 15 lines represents a model based on a specific predictor variable.

7 Conclusion

In this work, we have established a general setup for modeling the joint distribution of
mean forecasts, variance forecasts, and the target variable. This setup has allowed us to
derive several new results concerning uncertainty forecasts based on linear pools.

Under the assumption of correctly dispersed individual density forecasts, we can
quantify the variance bias of the linear pool which simply equals twice the expected
disagreement. Moreover, we find that under certain conditions, disagreement is encom-
passed by the weighted individual variance forecasts concerning the prediction of the
MSE of the combined mean forecast. These conditions are the normality of forecasts
and the target variable, the use of Bates-Granger weights, the absence of noise in the
variance forecasts, and the requirement that the mean forecasts be unbiased or iden-
tically biased. If all conditions mentioned are fulfilled, the disagreement component
unambiguously deteriorates the performance of the linear pool according to the scoring
rule proposed by Dawid and Sebastiani (1999), which is designed for the joint evaluation
of mean and variance forecasts. Therefore, a simple modification of the linear pool, the
elimination of the disagreement component which produces a centered linear pool, leads
to an improved forecast performance.
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While it is unlikely that all conditions mentioned are met in practice, it could be
that the deviations are small enough for the centered linear pool to yield better results
than the linear pool. For example, concerning the assumption of absence of noise in
the variance forecasts, we find that this noise is likely to be very small compared to the
implicit noise in the disagreement component.

In the empirical applications considered, it turns out that the centered linear pool
tends to outperform the linear pool if the disagreement component is not too small. This
is the case for the nowcasts of quarterly macroeconomic variables, where the centered
linear pool attains better scores than the linear pool. The better performance is mainly
due to the bias reduction in the variance forecasts. The disagreement component is
encompassed by the weighted individual variance forecasts only in one case. For the
forecasts of monthly stock returns, the disagreement component is very small, leading
to virtually identical results for both pools considered. However, the disagreement com-
ponent is encompassed by the weighted individual variance forecasts in the prediction
of the MSE of the combined mean forecast.

Since the construction of the centered linear pool is very simple, the theoretical and
empirical results suggest to try it out as a promising alternative to the traditional linear
pool.
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Appendix

A Derivations for baseline example

Here we prove that D and Sc are independent for ω = 0.5. Consider the vector W =[
X1, X2, U

]′
, which has mean zero and VCV

Ω =

 σ2X ρσ2X 0
ρσ2X σ2X 0

0 0 σ2X

 .
We can write W as W = C Z, where C is the lower-diagonal Cholesky matrix of Ω, and
Z is a trivariate vector of independent standard normals. Simple algebra yields that

C =

 σX 0 0

ρσX
√

1− ρ2σX 0
0 0 σU

 .
D is proportional to (X1 −X2)

2. We can write

(X1 −X2)
2 = (

[
1 −1 0

]︸ ︷︷ ︸
=a′

×W )2 = Z ′ C ′aa′C Z;

furthermore,

Sc = (
[
ω (1 + ρ) (1− ω) (1 + ρ) 1

]︸ ︷︷ ︸
=b′

W )2 = Z ′ C ′bb′C Z.

A standard result (Craig, 1943) states thatD and Sc are independent if C ′ aa′ CC ′ bb′ C =
0. Simple but tedious algebra shows that this holds true for ω = 0.5.
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B Basic formulas

The following formulas are used repeatedly in the proofs of Appendix C, and are thus
listed for easier reference. Note that we refer to A0 as the assumption that the prediction
space framework of Section 3.3 applies.

Object Expression Underlying Assumption(s)

E(D) Tr(AΣM ) + µ′MAµM

E(S) Tr(BΣM ) + (µ′Mw)2 + ΣU A0

E(ω′V ) ω′µV

Cov(D,S) 2 E(η2) Tr(AΣMBΣM ) + 4µ′MAΣMBµM+ A0, A5
V (η)× Tr(AΣM ) × (Tr(BΣM ) + ΣU )

Cov(S, ω′V ) V(η) ω′µV × (Tr(BΣM ) + ΣU ) A0

Cov(D,ω′V ) V(η) Tr(AΣM ) ω′µV

V(ω′V ) E(η2) ω′ΣV ω + V(η)(ω′µV )2

V(D) 2E(η2) Tr(AΣMAΣM ) + 4µ′MAΣMAµM+ A5
V(η)(Tr(AΣM ))2

Table 6: Formulas and underlying assumptions. Matrices A and B are defined as follows:
A = diag(ω)− ωω′, B = (γ − ω)(γ − ω)′.

C Proofs of theorems

Theorem 4.1

Proof. From A0 and A1, we have that µV,i (expected variance of forecast i) is given by

µV,i = (γ − ι(i))′ΣM (γ − ι(i)) + ΣU + ι′(i)µMµ
′
M ι(i),

where ι(i) is a vector of length n, with all elements equal to zero except the ith element

equal to one. Stacking the expected variances in µV =
[
µV,1, . . . , µV,n

]′
, we get

µV = (γ′ΣMγ + ΣU )ι+ Σ̃M + µ̃Mµ′M − 2ΣMγ, (9)

where ι is an n × 1 vector of ones, and Ã is an n × 1 vector containing the diagonal
elements of matrix A. From (9) and A3, the weighted average variance is given by

ω′µV = γ′ΣMγ + ΣU + ω′Σ̃M + ω′µ̃Mµ′M − 2ω′ΣMγ. (10)
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We then have that

E(D) + E(S) = Tr(diag(ω)ΣM )− ω′ΣMω + µ′Mdiag(ω)µM − (ω′µM )2 + γ′ΣMγ − 2γ′ΣMω +

ω′ΣMω + (ω′µM )2 + ΣU ,

= γ′ΣMγ + ΣU + ω′Σ̃M + ω′µ̃Mµ′M − 2ω′ΣMγ, (11)

where we use the formulas in Appendix B and the facts that i) Tr(ABC) = Tr(BCA)
and ii) the trace of a scalar is the scalar itself. Thus, ω′E(V ) = E(D) + E(S) and the
proof is complete.

Theorem 4.2

Proof. Denote by Mlp = ω′M and Vlp = ω′V +
∑n

i=1 ωi(Mi − Mlp)
2 the mean and

variance of the linear pool. Similarly, let Mclp = Mlp and Vclp = ω′V denote the mean
and variance of the centered linear pool. We have that

E (Y − ω′M)2 ≤ E
n∑
i=1

ωi(Y −Mi)
2

=
n∑
i=1

ωi E (Y −Mi)
2

=
n∑
i=1

ωi E Vi,

= E Vclp,

< E Vlp,

where the inequality in the first line follows from the convexity of the square function,
the second line follows from the assumption that the weights ω are deterministic, the
third line follows from neutral dispersion of the components as stated in assumption A1,
and the last two lines follow from the above expressions for the variances of both pooling
methods.

Lemma for Theorem 4.3

Lemma C.1. Under A0, A2 and A4, the following relations hold:

• Tr (AΣMBΣM ) = 0

• µ′MA = 0 ι′
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Proof. We first derive an expression for B = (γ − ω∗)(γ − ω∗)′, where ω∗ denotes the
optimal combination weights. Since the weights ω∗ are restricted to sum to 1,

ι′ω∗ = 1,

they are given by the population value of a restricted least squares regression of Y on
M . The probability limit of this estimator is given by

ω∗ = γ − ζ−1M ι
(
ι′ζ−1M ι

)−1︸ ︷︷ ︸
=P

(ι′γ − 1),

where ζM = E(MM ′). A2 implies that we can write ζM = κ2ιι′ + ΣM for some κ ∈ R.
From the inverse formula in Equation (160) of Petersen and Petersen (2012), we find
that

ζ−1M ι = Σ−1M ι
(
1 + κ2ι′Σ−1M ι

)−1
,(

ι′ζ−1M ι
)−1

=
(
1 + κ2ι′Σ−1M ι

) (
ι′Σ−1M ι

)−1
,

such that

P = Σ−1M ι
(
ι′Σ−1M ι

)−1
,

i.e. the parameter κ does not enter the probability limit of the optimal weights. Hence,

B ≡ (γ − ω∗)(γ − ω∗)′

=
(ι′γ − 1)2(
ι′Σ−1M ι

)2︸ ︷︷ ︸
≡ c ∈ R+

(
Σ−1M ιι′Σ−1M

)
. (12)

Equation (12) and the definition A = [G− ω∗ω∗′] imply that

AΣMBΣM = c
[
G− ω∗ω∗′

]
ιι′,

= c×

Gιι′︸︷︷︸
=ω∗ι′

− ω∗ω∗′ι︸︷︷︸
=1

ι′

 ,

= c× 0× I,

such that Tr (AΣMBΣM ) = 0. We further have that µ′MA = κ ι′[G− ω∗ω∗′ ] = κ [ω∗
′ −

ω∗
′
] = 0 ι′.
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Theorem 4.4

Proof. Note that under assumption A2+, the conditional expectations and variances of
S, D and ω′V are given by

E[S| η] = η × cE[S]
E[D| η] = η × cE[D]

E[ω′V
∣∣ η] = η × cE[ω′V ]

and

V[D| η] = η2 × cV[D]

V[ω′V
∣∣ η] = η2 × ω′ΣV ω

where cE[S], cE[D], cE[ω′V ], and cV[D] are constants referring to the respective quantities
conditional on η = 1, i.e. cE[D] = E[D| η = 1] etc. Moreover, under assumption A4 we
have

Cov(S,D| η) = Cov(S, ω′V
∣∣ η) = Cov(D,ω′V

∣∣ η) = 0.

Rewriting the regression (7) as

S∗ = c1D
∗ + c2

(
ω′V

)∗
+ error

with S∗ = S/E [S| η] , D∗ = D/E [D| η] , and (ω′V )∗ = ω′V/E [ω′V | η], the regressand
and the regressors have an expectation of 1. The regressors D∗ and (ω′V )∗ can be
regarded as noisy measures of the quantities E [D∗] = E

[
(ω′V )∗

]
= 1. Noting that

c1 = 1− λ and c2 = λ with λ ∈ R if D∗ = E [D∗] and (ω′V )∗ = E
[
(ω′V )∗

]
, employing

the standard formula for regressors with measurement errors yields

plim

([
c1
c2

])
=

[
V
[
(ω′V )∗

]
/
(
V
[
(ω′V )∗

]
× V [D∗] + V

[
(ω′V )∗

]
+ V [D∗]

)
V [D∗] /

(
V
[
(ω′V )∗

]
× V [D∗] + V

[
(ω′V )∗

]
+ V [D∗]

) ]
which shows that both coefficients c1 and c2 are subject to attenuation bias if V

[
(ω′V )∗

]
>

0, i.e. if ΣV > 0. If V
[
(ω′V )∗

]
< V [D∗], (ω′V )∗ is a more precise predictor (in a mean-

squared-error sense) of S∗ than D∗, resulting in plim (c1) < plim (c2). The condition
V
[
(ω′V )∗

]
< V [D∗] can be rewritten in terms of the conditional coefficients of variation,

yielding √
V [ω′V | η]

E [ω′V | η]
<

√
V [D| η]

E [D| η]
. (13)

Noting that
V[ω′V

∣∣ η] = η2 × V
[(
ω′V

∣∣ η = 1
)]

the unconditional coefficient of variation can be determined based on

V
[
ω′V

]
= E

[
η2
]
× E

[(
ω′V

∣∣ η = 1
)2]− (E [η])2 ×

(
E
[(
ω′V

∣∣ η = 1
)])2

.
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Using E [(ω′V | η = 1)] = E [ω′V ] and E [η] = 1, this can be rewritten as

V
[
ω′V

]
= E

[
η2
]
×
(
V
[(
ω′V

∣∣ η = 1
)]

+
(
E
[
ω′V

])2)− (E [η])2 ×
(
E
[
ω′V

])2
yielding √

V [ω′V ]

E [ω′V ]
=
√
V [η] (1 + Cω′V ) + Cω′V (14)

where Cω′V denotes the squared conditional coefficient of variation of ω′V

Cω′V =
V [ω′V | η]

(E [ω′V | η])2
=

V [ω′V | η = 1]

(E [ω′V ])2
.

The same calculations can be performed replacing ω′V by D, yielding√
V [D]

E [D]
=
√
V [η] (1 + CD) + CD (15)

with CD = V [D| η] / (E [D| η])2. This implies that√
V [ω′V ]

E [ω′V ]
<

√
V [D]

E [D]

holds iff the inequality (13) holds and vice versa.

Theorem 4.5

Proof. Concerning the conditional coefficient of variation of D, under A2+, the condi-
tional expectation and variance of D are given by

E [D| η] = η × Tr (AΣM )

V [D| η] = 2η2 × Tr (AΣMAΣM ) .

If the number of forecasters equals n = 2, A and ΣM equal

A =

[
w (1− w) −w (1− w)
−w (1− w) w (1− w)

]
ΣM =

[
σ21 σ12
σ12 σ22

]
.

with ω = [w, 1− w]′. In this case, the eigenvalues of AΣM and AΣMAΣM are given by

eig (AΣM ) =

[
w (1− w)

(
σ21 + σ22 − 2σ12

)
0

]
eig (AΣMAΣM ) =

[ (
w (1− w)

(
σ21 + σ22 − 2σ12

))2
0

]
.
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Since the trace equals the sum of the eigenvalues, the conditional coefficient of variation
is given by

CD =

√
V [D| η]

E [D| η]
=
√

2.

Concerning the conditional coefficient of variation of w′V , under assumptions A2+ and
A5, with η being constant and with n = 2 forecasters, the joint distribution of the
forecast errors q1 and q2 is given by[

q1
q2

]
∼ N

([
0
0

]
,

[
λ21 ρλ1λ2

ρλ1λ2 λ22

])
,

where ρ denotes the correlation of the forecast errors. The squared coefficient of variation
equals

V
[
(ω′V )2

]
(E [(ω′V )])2

=
E
[
(ω′V )2

]
(E [(ω′V )])2

− 1

where numerator and denominator are given by

E
[(
ω′V

)2]
= E

[(
w1q

2
1 + w2q

2
2

)2]
= 3w2

1λ
4
1 + 2

(
1 + 2ρ2

)
w1w2λ

2
1λ

2
2 + 3w2

2λ
4
2(

E
[(
ω′V

)])2
=

(
E
[
w1q

2
1 + w2q

2
2

])2
=

(
w1λ

2
1 + w2λ

2
2

)2
with ω = [w1, w2]

′. Since

∂
(
E
[(
ω′V

)2]
/
(
E
[(
ω′V

)])2 − 1
)
/ ∂

(
ρ2
)
> 0

setting ρ = 1 or ρ = −1 maximizes the squared coefficient of variation and yields for the
numerator

E
[(
ω′V

)2∣∣∣ ρ = 1
]

= 3
(
w1λ

2
1 + w2λ

2
2

)2
.

Thus, the coefficient of variation cannot exceed√√√√E
[

(ω′V )2
∣∣∣ ρ = 1

]
(E [(ω′V )])2

− 1 =

√√√√3
(
w1λ21 + w2λ22

)2(
w1λ21 + w2λ22

)2 − 1 =
√

2.

The same equality is obtained if w1 = 0 or w2 = 0.
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D Details on the SV model

This appendix provides details on the model used in Sections 6.1 and 6.2, which is of
the form

Yt = X ′t−1β + εt, (16)

εt ∼ N (0, exp(ht)), (17)

ht = ht−1 + νt, (18)

νt
iid∼ N (0, σ2ν). (19)

We denote the sample period by t = 1, . . . , T , and let X =
[
X0 X1 . . . XT−1

]′
and

Y =
[
Y1, . . . , YT

]
.

Sketch of Gibbs sampler

We first initialize all parameters at arbitrary initial values (indicated by subindex (0)).
Then, in Gibbs sampler iteration i = 1, 2, . . . , nG,

1. Draw β(i) from a multivariate normal distribution with the following variance and
mean:

V β =
(
V −1β +X ′W (i−1)X

)−1
, (20)

mβ = V β ×
(
V −1β mβ +X ′W (i−1)Y

)
, (21)

where W (i−1) = diag(1/ exp(h
(i−1)
1 ), . . . , 1/ exp(h

(i−1)
T )) and V β and mβ denote the

variance and mean of the Gaussian prior distribution for β.

2. Draw h
(i)
1 , . . . , h

(i)
T using the procedure of Kim, Shephard, and Chib (1998); see

Koop and Korobilis (2010, pp. 309-310) for a concise description.

3. Draw
(
σ
2(i)
ν

)−1
from a Wishart distribution with T + bν degrees of freedom and

scale parameter
(∑T

t=2(h
(i)
t − h

(i)
t−1)

2 + aν

)−1
, where aν and bν are prior parame-

ters (see Table 7).

4. Simulate next period’s log volatility as h
(i)
T+1 = h

(i)
T +ν

(i)
T+1, where ν

(i)
T+1 ∼ N (0, σ

2,(i)
ν ).

The forecast mean and variance for iteration i are then given by m
(i)
T+1 = X ′Tβ

(i)

and v
(i)
T+1 = exp(h

(i)
T+1), respectively.
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We use nG = 20, 000 Gibbs sampler draws, which are preceded by a burn-in period of
5, 000 draws. We compute the forecast mean and variance as

mT+1 =
1

nG

nG∑
i=1

m
(i)
T+1,

vT+1 =
1

nG

nG∑
i=1

v
(i)
T+1 +

1

nG
(m

(i)
T+1 −mT+1)

2;

these formulas follow from the usual view that the forecast distribution is an equally
weighted mixture of the nG forecast distributions obtained at the individual Gibbs iter-
ations.

Priors

Table 7 summarizes the prior parameters. For the survey-based nowcast model in Section
6.1, Xt is a scalar containing the SPF nowcast at date t, and we strongly shrink its
coefficient towards one. For the return prediction models in Section 6.2, Xt contains an
intercept and one out of 14 financial predictors; we use loose priors for β. In all cases,
we use a diffuse prior for (the initial log variance) h0, and our choices of aν and bν allow
for a considerable amount of stochastic volatility.

Parameter Value
Sec. 6.1 Sec. 6.2

mβ 1
[
0, 0

]′
V β 1e− 10 1000× I2
mh0 0
V h0 100
aν 1
bν 5

Table 7: Prior parameters for the two time series models. mh0 and V h0 denote the
prior mean and variance of the initial log variance, h0. All other parameters have been
introduced in the text.
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